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This paper describes a fast and scalable strategy for constructing a radiation hybrid (RH) map from data on
different RH panels. The maps on each panel are then integrated to produce a single RH map for the genome.
Recurring problems in using maps from several sources are that the maps use different markers, the maps do
not place the overlapping markers in same order, and the objective functions for map quality are incomparable.
We use methods from combinatorial optimization to develop a strategy that addresses these issues. We show
that by the standard objective functions of obligate chromosome breaks and maximum likelihood, software for
the traveling salesman problem produces RH maps with better quality much more quickly than using software
specifically tailored for RH mapping. We use known algorithms for the longest common subsequence problem
as part of our map integration strategy. We demonstrate our methods by reconstructing and integrating maps
for markers typed on the Genebridge 4 (GB4) and the Stanford G3 panels publicly available from the RH
database. We compare map quality of our integrated map with published maps for GB4 panel and G3 panel by
considering whether markers occur in the same order on a map and in DNA sequence contigs submitted to
GenBank. We find that all of the maps are inconsistent with the sequence data for at least 50% of the contigs,
but our integrated maps are more consistent. The map integration strategy not only scales to multiple RH maps
but also to any maps that have comparable criteria for measuring map quality. Our software improves on
current technology for doing RH mapping in areas of computation time and algorithms for considering a large
number of markers for mapping. The essential impediments to producing dense high-quality RH maps are data
quality and panel size, not computation.

Many genome-wide maps have been constructed as
part of the Human Genome Project. A current widely
used technique is radiation hybrid (RH) mapping (Goss
and Harris 1975; Cox et al. 1990; Walter et al. 1994).
One purpose of constructing maps is to provide land-
marks along each chromosome to guide sequencing of
the DNA. To date, most of the mapping effort has been
put into iteratively constructing denser and denser
maps rather than integrating new maps with old maps.
Recurring problems in using maps from several sources
are that the maps use different markers, the maps do
not place the overlapping markers in same order, and
the objective functions for map quality are incompa-
rable. Because many large contigs of human DNA se-
quence are now finished and submitted to GenBank, it
would be desirable to integrate maps of markers with
the DNA sequence so that the maps can continue to be
used to fill in the rest of the sequence and to identify
genes in regions bounded by well-mapped markers.

In this paper we propose and evaluate new strate-
gies for reconstructing RH maps and integrating those
maps as well as others that have comparable objective
functions for map quality. We also evaluate whether

the current maps and the new maps we compute are
consistent with human DNA sequence contigs in Gen-
Bank.

It is possible to reconstruct maps of previously
mapped markers because the RH database (RHdb,
http://www.ebi.ac.uk/RHdb/index.html) contains
publicly submitted RH vectors (rhvectors) for se-
quence-tagged site (STS) markers. An rhvector for an
STS x is a vector (x1, x2, . . . , xn), where n is the number
of hybrids (or cell lines) in the RH panel and each
xi = 0, 1, 2, depending on whether hybrid i is typed
and retains x, typed and does not retain x, or not
typed and/or ambiguous, respectively (Cox et al. 1990;
Boehnke et al. 1991; Matise et al. 1998).

The rhvectors in RHdb are generated from mul-
tiple mapping panels; those reviewed in this paper are
from the Genebridge 4 (GB4) panel (Gyapay et al.
1996) and the Stanford G3 panel (Stewart et al. 1997).
Previously published maps used the GB4 and G3 pan-
els independently and used independent resources
such as YAC contig data to build their maps (Hudson et
al. 1995; Deloukas et al. 1998). We decided to recon-
struct the RH maps to take advantage of the fact that
some markers were typed on both panels. The concat-
enation of rhvectors for the same marker from both
panels makes the resulting rhvectors longer, which
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Ben-Dor and Chor (1997) showed is essential to com-
pute more accurate RH maps.

RH mapping is based on the hypothesis that the
closer the loci are on a chromosome, the more likely
they are to be retained or lost together in a hybrid. That
is, their rhvectors will have few differences. The two
criteria typically used for assessing the closeness of
rhvectors are the number of obligate chromosome
breaks (OCB) and maximum likelihood estimate
(MLE). Other criteria like Bayesian posterior probabili-
ties involve more modeling assumptions (Lange et al.
1995) and have not been used in developing software
for computing RH maps. It is known that OCB and
MLE are not identical, but to our knowledge, Ben-Dor
and Chor (1997) are the first to show that OCB and
MLE are equivalent under conditions of equally spaced
markers and 50% retention of markers on hybrids.
However, these conditions are not satisfied by data on
current panels. We verify the incomparability of the
two objective functions.

The number of OCB for a marker order on a RH
map with markers typed on the same panel is the num-
ber of times a 1 is followed by a 0 or vice versa, ignoring
intervening 2s (unknown), between consecutive mark-
ers at all vector positions. The OCB objective for creat-
ing a map from rhvectors, then, is to find the marker
order that implies the minimum number of OCB
among all possible marker orders. For the MLE objec-
tive, the breakage probability and retention probability
are calculated from rhvectors that are then used for
estimating the distance between markers and the like-
lihood of a map. The order of the markers that maxi-
mizes the likelihood of the map is considered the true
order of markers on the map.

Current RH maps are produced with specially tai-
lored software packages such as RHMAP (Boehnke et al.
1991), RHMAPPER (Slonim et al. 1997), and MultiMap
(Matise and Chakravarti 1995). The packages currently
in use choose either OCB or MLE as the objective func-
tion and use statistical parameters and/or heuristics to
produce a map. When using MLE, Lange et al. (1995)
proposed a way of constructing a model that specifi-
cally incorporates the possibility of typing error and
presence of unknowns, and Lunetta et al. (1996) spe-
cifically allowed for multiple panels. We propose ex-
tensions to the OCB and MLE objective functions, dif-
ferent from those in previous papers such as (Lange et
al. 1995), to incorporate the presence of unknowns and
present a strategy that identifies markers with the same
map order independent of which extended version of
objective functions is used.

We borrow several tools and techniques from do-
mains of computer science and combinatorial optimi-
zation (Papadimitriou and Steiglitz 1982) to design and
implement our strategy. It has been known for several
years that for haploid error-free data, the problem of

computing a RH map for either the OCB or MLE crite-
rion can be mathematically transformed into an in-
stance of a much studied optimization problem called
the traveling salesman problem (TSP; Karp et al. 1996;
Ben-Dor and Chor 1997). The transformation employs
an approach using multiple pairwise comparisons be-
tween markers rather than the more commonly used
multipoint comparisons. The transformation is exact
when there are no unknown entries in the data and
approximate otherwise. The TSP has been the subject
of intense research for decades (Papadimitriou
and Steiglitz 1982; Lawler et al. 1985; Reinelt 1994),
and there is now a superb software package called
CONCORDE (combinatorial optimization and net-
worked combinatorial optimization research and
development environment; Applegate et al. 1998)
for solving large instances. We decided to test
CONCORDE for RH mapping as part of our effort to
reconstruct maps. An unintended result of our experi-
ments is that CONCORDE consistently computes maps
with lower OCB and higher MLE than those computed
by RHMAPPER. Moreover, CONCORDE is much faster
on large data sets than RHMAPPER when RHMAPPER is
required to compute its initial framework internally de
novo. In the past, the users of RHMAPPER have con-
structed an initial framework map, in part, by relying
on information from other sources such as genetic map
and YAC contig data (Slonim et al. 1997).

Ben-Dor and Chor (1997) showed that with the
current number of hybrids, the probability of getting
“the correct order” for all the markers is very low
(<0.01). Even for only 20 markers, the success probabil-
ity is <0.5, so any strategy that is pinned to framework
maps of >20 markers is likely to produce maps with
serious large-scale errors. The attempts made to model
errors in data by hidden Markov models (Heath 1997;
Slonim et al. 1997) have been successful in placing a
few hundred markers but cannot be used for placing
the thousands of markers that are becoming available
without starting from a fairly dense initial framework
map.

For consistency, we compare previous maps and
our integrated map with large sequence contigs sub-
mitted to GenBank. The maps are consistent with the
sequence if markers are placed in the correct sequence
order on the map. We choose this objective function
for map quality because there is currently no good way
to assess how much better one map is compared with
another one in terms of the number of markers actu-
ally ordered correctly except for chromosome 22 for
which the completed sequence is available. We find
that all of the maps are inconsistent with the sequence
data for at least 50% of the contigs, but our integrated
maps are more consistent. We provide some evidence
that the inconsistencies are in large part due to data
quality or panel sizes and not as much due to mapping
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strategy. We also list the number of markers in the
same order between every pair of Généthon (Dib et al.
1996), RH Consortium (Deloukas et al. 1998), Stanford
(Stewart et al. 1997), and our integrated map.

The next section of this paper presents definitions
and theoretical background on RH mapping and its
relationship to problems in combinatorial optimiza-
tion. (More background material that is relevant to the
rest of the paper, but less essential, can be found in the
Appendix.) This is followed by a section in Results de-
scribing our map reconstruction strategy, our map in-
tegration strategy, and our computational experiments
with these strategies. We conclude with a short Discus-
sion and a short section on Methods summarizing
availability of our software and data.

Definitions and Theoretical Background
Our methods rely on known algorithms for two prob-
lems widely studied in computer science and combi-
natorial optimization: the longest common subse-
quence problem (LCSP, sometimes also called the long-
est common substring problem) and the TSP. Both
LCSP and TSP have many applications to problems in
computational biology (Gusfield 1997) but may be un-
familiar to practitioners of RH mapping. Therefore, we
summarize the most essential background material in
this section. More background material including a
brief history of the TSP can be found in the Appendix.

LCSP
Given two sequences A = a1, a2, . . . , an and B = b1,
b2, . . . , bm, find a longest sequence C = c1, c2, . . . , ck

such that C is a subsequence of both A and B. For
example, if A = a, l, g, o, r, i, t, h, m and B = l, o, g, a, r,
i, t, h, m, then longest common subsequences (LCS) are
l, g, r, i, t, h, m and l, o, r, i, t, h, m, both of length 7. In
the weighted version of the problem, we look for com-
mon subsequence that has maximum weight. In the
previous example, if the weights are a = 3 and for other
letters 1, then the weighted common subsequence for
A and B is a, r, i, t, h, m that has weight 8 and not l, g,
r, i, t, h, m or l, o, r, i, t, h, m that have weight 7.

The LCSP and its weighted version can both be
solved using dynamic programming (Gusfield 1997).
The length of the LCS is often used to measure the
similarity of two strings. We shall use it to quantify the
consistency between a pair of maps where two or more
markers are said to be consistent with a pair of maps if
their partial order on both maps is the same; that is, if
for every pair of markers x, y, either x < y in both maps,
x > y in both maps, or the relative positions of x, y are
not specified in both maps.

Maximum Likelihood Computation
The steps for doing data analysis using maximum like-
lihood are as follows (Boehnke et al. 1991; Lange et al.
1995):

1. The retention probability p of the data set is esti-
mated by the ratio of the total number of 1s to the
total number of 1s and 0s.

2. The likelihood of observing rhvector (x1, x2, . . . , xn)
for a single marker x is

L~x! = @1 − qc#n1 × @qcn0# (1)

where c is 1 for haploid, 2 for diploid, q = 1 1 p, and
nj is the number of positions i such that xi = j.

3. The likelihood of observing rhvectors for a pair of
markers x and y is

L~x, y! = L~x!L~y | x! (2)
= L~y!L~x | y! (3)
= ~1 − 2qc + @q~1 − ux,yp!#c!n11@qc~1 − ~1

− ux,yp!c!#~n01+n10!@q~1 − ux,yp!#cn00 (4)

where ux,y is the breakage probability between mark-
ers x and y, and nij is the number of positions r such
that xr = i and yr = j.

4. L(x,y) is maximized when ux,y is the smaller root of
the equation obtained by setting the derivative of
L(x,y) with respect to ux,y to 0. For the diploid case,
the equation to be solved is a degree five polyno-
mial, and for the haploid case, we get a degree two
polynomial whose solution gives the following:

ux,y = @~n − n11p − n00q!

− =~n − n11p − n00q!2 − 4npq~n10 + n01!#/~2npq!
(5)

The root of the quadratic equation chosen for u is
the smaller root to satisfy the constraint that ux,y = 0
when n10 + n01 = 0.

5. The maximum likelihood +(M) of marker order x1,
x2, . . . , xm on a map M, also known as likelihood of
M, is

+~M! = +~x1, x2, . . . , xm!
= +~x1! × +~x2 | x1! × +@x3 | ~x1, x2!# × . . .

× +@xm | ~x1, x2, . . . , xm1
!#

We use + to denote multipoint likelihood and L to
denote two-point likelihood. By considering condi-
tioning events as independent and removing the
conditioning on independent events, the multi-
point maximum likelihood of map x1, x2, . . . , xm is
approximated by several two-point likelihood esti-
mates as

+~M! ≈ L~x1! × L~x2 | x1! × L~x3 | x2! × . . .
× L~xm | xm−1! = L~M! (6)

When there are many errors in the data, two-point
likelihood estimates are preferred over multipoint like-
lihood estimates because the errors should not propa-
gate as badly. Our evaluation of rhvector data, as sum-
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marized in Table 4, below, suggests that the error rate is
high.

TSP
Given a finite number of cities and the cost of travel
between each pair of them, find the cheapest way of
visiting all of the cities and returning to the starting
point. As explained in the Appendix, the TSP is intrac-
table in a formal sense, but much research has gone
into methods for solving specific instances either ap-
proximately or optimally. A well-known software pack-
age for the TSP, namely CONCORDE (Applegate et al.
1998), has been shown to do fairly well even on huge
data sets and has set several world records for the larg-
est instances solved to optimality.

In RH mapping, markers correspond to cities with
a dummy marker as the start and end city, and the cost
of travel corresponds to the measures of similarity of
rhvectors. For haploid error-free data, the objective
functions for RH mapping can be translated into dis-
tance functions for TSP (Karp et al. 1996). We then
briefly state the reductions described in the reference.

Reducing OCB to a Distance Measure for TSP
The distance between two rhvectors (x1, x2, . . . , xn)
and (y1, y2, . . . , yn) is the number of positions at which
xi = 1 and yi = 0 or vice versa with distance from
dummy marker to any other marker being any con-
stant. If there are no unknowns in the given RH data,
then the marker order produced by TSP achieves mini-
mum OCB.

Reducing MLE to a Distance Measure for TSP
Define the transition probability for marker x as

tx = ~=p!n1~=q!n0 (7)

and the transition probability between markers x and
y as

tx,y = ~1 − ux,yp!n00~1 − ux,yq!n11~ux,y=pq!n10+n01

(8)

tx is also referred to as the transition probability be-
tween dummy marker and x. The transition probability
of a map x1, x2, . . . , xm is given by

T~x1, x2, . . . , xm! = tx1
× tx1,x2

× ? ? ? × txm−1,xm
× txm

(9)

Karp et al. (1996) left it as an exercise to show that for
haploid error-free data

T~x1, x2, . . . , xm! = L~M! (10)

(See Appendix for a proof of equation 10.) The objec-
tive in TSP is to minimize a sum of distances. To con-
vert the objective from maximizing a product to mini-
mizing a sum, suitable for TSP, set the distance dx,y as
1log(tx,y).

Computing retention frequency and breakage
probabilities for diploid data with errors results in
Markov and hidden Markov models that can be used
for estimating the likelihoods by techniques such as
the estimation-maximization (EM) algorithm. These
methods are thus limited in the number of markers
they can map reliably and are not suitable for transla-
tion to TSP. Ben-Dor and Chor (1997) used the ap-
proach of first estimating the breakage probability be-
tween every pair of markers, taking into account
whether the data are haploid/diploid and contain labo-
ratory errors instead of assuming that data are haploid
and error free, and then reduced the MLE problem to
TSP as above. They remark that using the breakage
probability derived from the (degree five) polynomial
for diploid data did not always improve the results
compared with using the (degree two) polynomial for
haploid data. Because the reduction for haploid error-
free data can be used to approximate the likelihoods
for diploid data, we chose to compute the breakage
probabilities assuming the data to be haploid and error
free. We note that the ideas presented below can be
extended to the case where breakage probabilities are
derived from the polynomial for diploid data but the
transformations to TSP are valid only for haploid error-
free data.

The reductions from OCB and MLE to TSP achieve
the corresponding objective function when the data
does not have unknowns and is relatively error
free. Recent advances in software for TSP, namely
CONCORDE, make it appealing to extend the above
reductions to incorporate unknowns to reduce the ef-
fect of unknowns on the quality of map produced us-
ing TSP. We then present five such extensions for the
two reductions. Note that the reductions are a method
for assigning edge weights in the TSP instance, not the
method for evaluating the marker order on a map. The
OCB and MLE objective functions are applied in the
same way to a marker order, regardless of how the
marker order was obtained. To indicate which of the
reductions from OCB or MLE to TSP is being extended,
we tag each name by TSP+OCB or TSP+MLE. We pre-
sent them in terms of distances between a marker pair
x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn). We use p
and nij as before.

Normalized TSP+OCB
The distance (n10 + n01) as computed in the reduction
of OCB to TSP is normalized by n/(n00 + n01 + n10 + n11)
under the assumption that the positions with un-
knowns in them have the same distribution of differ-
ences as the positions in which both xi and yi are
known. The distance according to this objective func-
tion is, then,

~n10 + n01! ? n/~n00 + n01 + n10 + n11! (11)
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Weighted TSP+OCB
In this objective function, all six combinations for a
pair from {0, 1, 2} are assigned a weight. We did several
experiments with different weighting schemes. Each
experiment has three steps: (1) compute edge weights
between every pair of markers, including the dummy
marker, according to the weighting scheme, (2) solve
TSP by using the part of CONCORDE that guarantees
an optimal order for given distances (see Appendix for
details), and (3) compute OCB for the marker order M
obtained by TSP; compute the sum of (n10 + n01) for
consecutive markers on map M. Among the edge
weights that we tested, the scheme that results in a
map with lowest OCB is

n10 + n01 + 0.2 ? n22 + 0.3 ? ~n21 + n20 + n02 + n12! (12)

The schemes we tried were tested on the data we have
for GB4 and G3 panels. As the above scheme gave
lower OCB and higher MLE for virtually all chromo-
somes and for both GB4 and G3 panel data, we believe
that the scheme should be generalizable to all human
radiation hybrid data. For example, consider the un-
weighted scheme of (n10 + n01). The average number of
breaks between consecutive markers for the marker or-
ders using the weighting scheme in equation 12 was
2.70 as against the unweighted scheme that had the
average of 2.79. The only case in which the un-
weighted scheme did better was for GB4 panel data for
chromosome 21 where the weighting scheme in equa-
tion 12 needed 2.36 average number of breaks and un-
weighted scheme needed 2.35.

Base TSP+MLE
Same as reduction from MLE to TSP.

Extended TSP+MLE
Same as reduction from MLE to TSP except that in
equation 5, n is replaced by (n00 + n01 + n10 + n11).

Normalized TSP+MLE
The breakage probabilities are computed as in Ex-
tended TSP+MLE. The transition probabilities are nor-
malized to reflect that compution of breakage prob-
abilities ignores positions contributing to n22. The
distance between x and y resulting from this normal-
ization is

−n@n00A + n11B + ~n10 + n01!C +

=~n12 + n21!~B + C! + ~n02 + n20!~A + C!#

~n − n22!

where A = log(1 1 ux,yp), B = log(1 1 ux,yq), and C =
log(ux,y√pq). The distance between dummy marker and
x is given by

−n ? ~n1 ? log =p + n0 ? log =q!

n0 + n1

When the data does not have unknowns, the above
five extensions simplify to the two reductions men-
tioned earlier in this section.

When OCB and MLE are incomparable, as in GB4
and G3 panel data, we should not expect solutions of
TSP for each of the above five theoretically meaningful
and robust reductions to result in the same map. We
find the subset of markers for which order is not af-
fected by the criteria used for placing them on a map.
Because each TSP+OCB [TSP+MLE] weighting scheme
is a minor variation of OCB [MLE] objective function,
we attribute the differences in marker order on maps to
limitations of the data vectors and panels for the mark-
ers. The markers whose order is sensitive to the choice
of reduction are removed in favor of constructing a
reliable map at the cost of not placing every marker. In
the next section we present how we can extract the
pieces of the map that are consistent among all maps
to produce a single RH map for each panel and then
use the same idea to integrate the map for each panel.

RESULTS
We first present a RH map construction strategy with
the goal of producing maps that can be integrated. The
emphasis is on striking a balance between the reliabil-
ity of the map produced and the number of markers
that get placed on the map. Second, we present a map
integration strategy. The map integration procedure is
not specific to RH maps and can be used for any maps
that have the same objective criteria. Third, we present
comparisons of our new maps with previously pub-
lished maps, maps reconstructed with RHMAPPER, and
sequence data submitted to GenBank.

Map Construction
The steps are as follows:

Step 1: Compute Framework Markers
The candidates C for framework markers are the mark-
ers typed on all panels. For each candidate framework
marker in C, its rhvectors from different panels are
concatenated to produce a virtual rhvector for the
marker. The set of framework markers F is a subset of
framework candidate markers C such that no marker
pair in F is “very close” or “too ambiguous” to another
marker in F where closeness and ambiguity are deter-
mined by cutoffs for break count B, negative logarithm
of transition probability LL, and percentage of un-
knowns U. If a marker x{C has more unknowns with
respect to the length of its rhvector than U, then x is
not present in F. If a pair of markers x,y{C have a break
count <B or have 1log(tx,y)>LL, at least one of x,y is not
present in F. The breakage probability for tx,y was com-
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puted as in Extended TSP+MLE. The cutoffs are deter-
mined experimentally and necessarily depend on the
data. We look for cutoffs that give a non-negligible set
F of framework markers such that the maps for markers
in F computed in step 2 and step 3 are mostly consis-
tent. For all maps described here, we used B = LL = 3
but did not use any cutoff for percentage of unknowns.

Step 2: Compute Maps
Reduce the problem of computing a map to that of TSP
using each of the five reductions described in the pre-
vious section. Use CONCORDE to solve each instance
of TSP and transform the solution to a map. This re-
sults in five maps for framework markers correspond-
ing to five reductions.

Step 3: Compute a Framework Map
We compute a framework map as the map with only
those framework markers whose order is consistent
with all the maps computed in step 2. In practice, we
find that in step 1, deleting markers that have rhvec-
tors with more unknowns than those conflicting with
them is effective.

Step 4: Compute Maps for Each Panel
Same as step 2 but with all markers for the panel and
not just the framework markers.

Step 5: Reorder Maps
If there are m markers on the framework map, say f1,
f2, . . ., fm, and two terminals (f0 for p-terminal and fm+1

for q-terminal), then there are m + 1 intervals on the
framework map into which each remaining marker on
the panel can be placed. For each marker x, we find the
interval fi, fi+1 such that the likelihood of fi, x, fi+1 is the
maximum among all the intervals. We compute the
lod score of placing x as the logarithm of the likelihood
ratios of placing x in the best interval to placing x in
the next best interval. Then, each map computed in
step 4 is globally reordered as follows:

1. For each fi, find the consecutive set of markers on
map M including fi that have the interval i, i 1 1 or
i + 1 assigned to them. This piece of the map is
called an extendible piece of M for fi.

2. Consider f0, . . . , fm+1 in order of their increasing
index. For each fi, find the set of markers X in the
extendible piece for fi such that each marker in X is
also present in a previously considered extendible
piece for f0, f1, . . . , fi11. Delete markers in X from
the extendible piece for fi. In practice, we do not see
markers in extendible pieces overlapping with
markers in extendible pieces of more than one or
two previous framework markers.

3. Determine if the assignment of interval i 1 1 or
i + 1 orients the piece with respect to the framework
map. If the interval assigned to the first marker of an

extendible piece is less (greater) than the interval to
the last marker of the extendible piece, then the
piece is oriented from p-terminal to q-terminal (q-
terminal to p-terminal). If the first and last markers
are assigned to the same interval, then the piece is
unoriented.

4. If an extendible piece of M for fi can be oriented, the
piece replaces fi, and relative ordering of markers in
the piece is preserved; otherwise, all the markers in
the piece are collapsed at the position for fi.

The global reordering of extendible pieces allows for
framework markers to be reordered locally on the map
when the extendible piece of M for fi contains the ex-
tendible pieces of M for fi+1, fi+2, . . . , fi+k (resulting in
empty extendible pieces of M for fi+1, fi+2, . . . , fi+k) and
the extendible piece of M for fi is oriented in the direc-
tion that puts fi+1 before fi. Thus, we are not treating
the framework map as absolutely rigid.

We illustrate step 5 with the following example:
Let p-terminal, a3, a11, a8, a14, q-terminal be the frame-
work map computed in step 3 and let p-terminal, a1,
a2, . . . , a14, q-terminal be a map computed in step 4.
Suppose we assign the following: interval 0 to marker
p-terminal, a1; interval 1 to markers a2, a3, a4; interval 2
to marker a5; interval 5 to marker a6; interval 3 to
markers a7, a8, a9; interval 2 to markers a10, a11, a12;
interval 4 to markers a13, a14; and interval 5 to marker
q-terminal. Then, the extendible piece for p-terminal is
p-terminal, a1, a2, a3, a4 ordered from p-terminal to a4;
for a3 gets reduced from p-terminal, a1, a2, a3, a4, a5 to
just a5; for a11 is a7, a8, a9, a10, a11, a12 ordered from a12

to a7; for a8 gets reduced from a7, a8, a9, a10, a11, a12 to
empty; for a14 is a13, a14 unordered; and for q-terminal
is q-terminal. Note that a6 does not get assigned to any
extendible piece. The map computed in step 4 gets re-
ordered in step 5 to p-terminal, a1, a2, a3, a4, a5, a12, a11,
a10, a9, a8, a7, a13, a14, q-terminal with a6 getting
dropped and a13, a14 collapsing to same position as
that of framework marker a14.

The concatenation of rhvectors for the same
marker but different panels produces a longer virtual
rhvector. This gives us a better chance of obtaining a
reliable map for the common markers as we have more
data to decipher their order on the map. If there is only
one panel for which we have to compute a RH map, we
do step 2 and step 3 described above using all markers
available for the panel. However, when maps are to be
constructed for more than one panel and these maps
are to be integrated, we devise our map construction
strategy to take advantage of the fact that we have
some markers that are present in all panels. The reor-
dering of the map in step 5 results in some markers not
getting placed on the map. These markers are discarded
because their vectors were not consistent with the
piece of the map that they were close to.
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Map Integration
In this subsection we describe how to integrate two or
more maps that have the same criteria for measuring
the score of placing a marker on a map. The core of the
integration strategy is to use the algorithm for the
weighted LCSP for finding a set of markers that are
common and have same relative order in a pair of
maps.

Merging Maps
To merge two maps, we first compute their weighted
LCS. The markers common in both maps but not pres-
ent in the LCS are deleted from both maps. The mark-
ers that are not common between the two maps are
interleaved by interpolation between markers that are
in the LCS. For more than two maps, the number of
common markers among all of them may be consider-
ably less than the number of common markers for any
pair of maps. Our algorithm for merging more than
two maps is to first merge maps for all pairs and then
iteratively merge the results of those pairwise merged
maps. There is no fixed order in which pairwise maps
are merged.

For RH maps produced using the strategy in the
previous subsection, the weight of a marker is its lod
score that is computed in step 5. The steps for produc-
ing an integrated RH map use the merge procedure
described in the previous paragraph. The steps are as
follows:

Step 6
Merge reordered maps to produce one map per panel.

Step 7
Merge maps for each panel to produce an integrated
map.

New Maps and Quality Assessment
We have presented a method of constructing RH maps
from data on various panels with the aim of integrat-
ing them to produce a single RH map. We use our
algorithm on G3 panel and GB4 panel data down-
loaded from RHdb to construct an integrated G3/GB4
panel RH map. We seek to balance the quality of the
map and the number of markers that get placed on the
map. Because the objective functions for RH mapping
cannot be directly used to evaluate the quality of the
maps, we check our maps using segments of contigu-
ous genomic sequence (contigs) reconstructed from in-
dividual clone sequences (Jang et al. 1999), from chro-
mosome 22 sequence (Dunham et al. 1999), and with
already published maps. We compare our software
with RHMAPPER.

New Maps
We obtained the rhvector inputs for our experiments
from the RH database (RHdb, http://www.ebi.ac.uk/

RHdb/index.html). Before using the data from RHdb,
we first assign a unique identifier to each pair of for-
ward and reverse primers for STS markers. Two markers
with identical primer sequences are, in reality, the
same STS marker and are assigned the same identifier.
If an identifier has more than one rhvector, we pick an
rhvector with the fewest unknowns.

We reconstructed maps for the GB4 and G3 panel
data using CONCORDE and the five transformations
to TSP (two variants of OCB and three variants of MLE)
described earlier. These maps were then integrated to
produce a single RH map. We have used the chained
Lin–Kernighan (Lin and Kernighan 1973) heuristic
from CONCORDE and the module that finds an opti-
mal solution. Our experience is that the chained Lin–
Kernighan heuristic from CONCORDE performs very
well for RH data sets. For our data set, the running time
for the number of iterations (250,000 kicks, two runs)
for which we ran chained Lin–Kernighan heuristic is
comparable with the running time of the module that
finds an optimal solution. The module that finds an
optimal solution requires a license for a software li-
brary that is not free. To make the comparisons fair and
to make our software free to all, the results shown here
use only the free parts of CONCORDE.

The numbers of unique identifiers in the GB4
panel and G3 panel data downloaded from RHdb are
40,898 and 7011, respectively. Each unique identifier
corresponds to a marker in our analysis. The number of
markers common to both panels is 2087. Of these 2087
markers, 1330 are candidates for the framework map as
the rest are too close to another candidate framework
marker. The number of markers placed on the frame-
work map is 1084 with a maximum of 103 markers on
the framework for chromosome 4 and a minimum of
17 markers on the framework of chromosome 21. The
total number of markers placed on the integrated map
is 23,723 out of 45,822 unique identifiers assigned to
the panel data.

Software Quality
As described above, we have constructed an integrated
G3/GB4 RH map. We also attempted to produce maps
with RHMAPPER using the same data on both panels,
to compare RHMAPPER with our software that uses
CONCORDE. We chose RHMAPPER because it was
used to construct the Whitehead Institute map (Hud-
son et al. 1995). We did not constrain RHMAPPER to
any initial framework or to any set of markers for the
initial framework. We computed an initial framework
using the options available in RHMAPPER on the panel
data because we did not want to constrain RHMAPPER
to a possibly erroneous initial framework not of its own
choosing.

Running Time

To compute all the single-chromosome maps described
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above with CONCORDE took <2 weeks total on a Sun
Ultra10 workstation. We even tested CONCORDE with
input consisting of all the markers on all the chromo-
somes together, and that computation took 3 days. Be-
cause we used the chained Lin–Kernighan heuristic
from CONCORDE whose running time is dependent
on the number of iterations as well as the size of data,
computing a map of all the markers together with
(500,000 kicks, two runs) takes less time than the com-
putation of chromosome-specific map where each
map is run for (250,000 kicks, two runs). In contrast,
RHMAPPER could not finish a chromosome 1 map
within 3 weeks, and took >2 months to compute all the
remaining single-chromosome maps. Constraining to
an initial framework would reduce the running time
for RHMAPPER considerably but may impact the qual-
ity of the map and make the quality comparison done
below invalid as the errors in maps computed by
RHMAPPER may be attributed to the initial framework.

Map Comparison in Terms of OCB and MLE

We consider Whitehead Institute map, maps com-
puted by us using RHMAPPER for both G3 and GB4
panel data, and maps computed using CONCORDE for
both G3 and GB4 panel data. For each map and each
chromosome, we compute the average number of
chromosome breaks observed between consecutive

markers and the average of the logarithm of two-point
likelihood for the maps with breakage probabilities
computed as in Extended TSP+MLE. We could not use
RHMAPPER for evaluating the multipoint likelihood of
the maps because RHMAPPER suffers from underflow
for the number of markers we have on our maps. We
compared maps computed using CONCORDE for both
G3 and GB4 panel data and not our integrated map
because we cannot compute OCB or MLE when con-
secutive markers on a map are from different panels.
Furthermore, the maps produced by RHMAPPER are for
one panel. The results are summarized in Tables 1 and
2. RHMAPPER runs for chromosome 1 were aborted
after 3 weeks of computation and is reflected by a “?”
in Tables 1 and 2. There, we have not attempted to
produce an “optimal” order for the markers that are
binned to the same position on the maps because the
rhvectors for markers binned to the same position, in
principle, should be similar.

Because the maps produced using RHMAPPER by
us (columns 2, 3, 5, and 6 of Table 1) have lower aver-
age OCB and higher average logarithm of likelihood
than the Whitehead Institute map, we feel that our
strategy of not constraining RHMAPPER by an initial
framework does not degrade the quality of maps pro-
duced. Therefore, it is fair to compare the maps pro-
duced by us using RHMAPPER with the maps produced

Table 1. Average Number of Chromosome Breaks Between Consecutive Markers and the Average of the Logarithm of
Two-Point Likelihood for the Maps with Breakage Probabilities Computed as in Extended TSP + MLE

Chr

OCB/no. of markers Log [L(M)]/no. of markers

Whitehead RHMAPPER CONCORDE Whitehead RHMAPPER CONCORDE

1 3.70 ? 1.66 15.74 ? 12.28
2 4.18 3.80 2.12 16.37 15.47 13.02
3 3.92 2.71 1.97 16.17 14.22 12.82
4 3.84 3.75 2.15 15.97 15.37 13.01
5 3.66 3.37 1.99 15.72 14.98 12.73
6 3.59 2.60 1.70 15.73 14.07 12.44
7 4.00 2.86 1.92 16.20 14.41 12.79
8 3.64 3.64 2.09 15.88 15.39 12.97
9 3.56 2.86 1.85 15.59 14.28 12.55

10 3.76 3.55 2.04 15.95 15.24 12.91
11 3.35 2.53 1.86 15.26 13.87 12.42
12 3.67 3.87 1.98 15.86 15.66 12.81
13 3.58 2.92 2.01 15.72 14.50 12.89
14 3.43 2.43 1.79 15.52 13.78 12.53
15 4.28 4.16 2.25 16.64 15.99 13.19
16 4.43 3.18 2.32 16.70 14.87 13.30
17 4.27 2.74 2.03 16.71 14.29 12.83
18 4.22 3.07 2.47 16.48 14.76 13.63
19 4.40 2.78 1.99 16.74 14.26 12.67
20 3.76 2.41 1.74 16.10 13.83 12.45
21 3.99 2.64 2.19 16.65 14.40 13.35
22 4.12 2.87 2.17 16.62 14.53 13.09
X 3.37 2.36 1.70 15.22 13.61 12.32

(Chr) Chromosome number; (Whitehead) Whitehead Institute map (Hudson et al., 1995); (RHMAPPER) maps computed by us using
RHMAPPER for GB4 panel data; (CONCORDE) maps computed using CONCORDE for GB4 panel data.
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using CONCORDE. Some of the differences in results
for GB4 panel between the map of Whitehead Institute
and the one produced by us using RHMAPPER on GB4
panel can be attributed to the fact that we are using
markers that became available since their map was
published. It is also possible that the currently avail-
able data have been cleaned since earlier versions that
may have been used for previous maps or that the ge-
netic map and YAC contig data used by the Whitehead
Institute to build the initial framework was erroneous.

CONCORDE consistently produces maps that
have lower average OCB and higher average logarithm
of likelihood than those constructed with RHMAPPER.
Because computation of maps using RHMAPPER
and our software started with the same data and
RHMAPPER was not constrained by an initial (possibly
erroneous) framework map, Tables 1 and 2 suggest that
our strategy is able to do a better job than RHMAPPER.
Based on work for TSP, there is some intuitive justifi-
cation for why this should be so. First, orders of mag-
nitude more person years have been spent developing
algorithms and software for TSP than for RH mapping.
Second, the approach taken by RHMAPPER is to con-
sider triples of markers and to do local extensions. For

the initial framework map, RHMAPPER does local ex-
tensions several times with random permutations of
the file containing information for triples. For growing
the map by a marker, RHMAPPER considers only the
triples created by consecutive markers on the initial
framework map and the marker. There is an analogous
method for TSP called 2-opt (in general k-opt) that con-
siders changing only two edges of the traveling sales-
man tour at a time and continues doing so until no
further improvement can be found. It is established
that for typical large TSP problems, the chained Lin–
Kernighan method in CONCORDE finds lower cost
tours than 2-opt (e.g., see Johnson and McGeoch
1997). This is because the Lin–Kernighan heuristic does
more large-scale rearrangements and looks at a much
larger neighborhood of solutions than 2-opt to try to
improve the current solution. We see no reason why
this general difference in performance should be dif-
ferent for RH mapping problems. RHMAPPER does not
formally treat the problem as an instance of TSP, but
the heuristic used by RHMAPPER suffers from the same
weakness that 2-opt has for TSP. It is an open research
problem to design and implement good software for
finding best global order when information given is for
only triples.

Quality of Integrated Map
We compare the quality of our integrated map with
that of previously published maps by looking at con-
sistency with sequence data and by looking at the
maximum number of markers placed in same relative
order between pairs of maps.

Consistency with Sequence Contigs

To test the correctness of a map, we can check the
order of markers that are on the contigs that have been
sequenced. We place markers on contigs using the e-
PCR program (Schuler 1997). On October 27, 1999,
there were 1807 human DNA contigs in GenBank on
which we placed at least one marker. The position of a
marker on a contig was determined by the physical
base pair position of the left end of the marker from
one end of the contig. The number of pairs of markers
that were consecutive on a contig and typed on GB4
and/or G3 panels were 4071 and 98, respectively. We
say that a contig is consistent with the map if there are
at least three markers that are both on the map and on
the contig under consideration and the order of these
markers is the same. Our analysis considers all the
markers on the map and is not restricted to the markers
that are placed with significant statistical support. We
also consider the case when one marker is allowed to
be misplaced on the contig. The number of consistent
contigs are 159 of 799 (19.90%) for GB4 map of RH
Consortium (Deloukas et al. 1998), 97 of 291 (33.33%)
for GB4 map of Whitehead (Hudson et al. 1995), 27 of

Table 2. Average Number of Chromosome Breaks
Between Consecutive Markers and the Average of the
Logarithm of Two-Point Likelihood for the Maps with
Breakage Probabilities Computed as in Extended
TSP + MLE

Chr

OCB/no. of markers Log [L(M)]/no. markers

RHMAPPER CONCORDE RHMAPPER CONCORDE

1 ? 2.91 ? 14.41
2 4.96 2.88 16.24 14.40
3 5.18 3.13 16.55 14.73
4 5.52 2.96 16.77 14.59
5 5.17 3.09 16.67 14.69
6 4.76 3.11 16.28 14.72
7 5.91 3.69 17.16 15.29
8 5.34 3.09 16.73 14.70
9 4.73 3.16 16.21 14.79

10 5.35 3.47 16.73 15.08
11 5.79 3.24 17.00 14.84
12 5.31 3.32 16.86 15.05
13 4.58 3.17 15.96 14.79
14 4.04 2.93 15.69 14.57
15 4.70 3.76 16.36 15.39
16 5.04 3.49 16.47 15.12
17 4.39 3.69 16.07 15.50
18 6.10 3.88 17.52 15.54
19 4.95 3.23 16.59 14.88
20 4.87 3.70 16.43 15.53
21 3.79 3.36 15.73 15.16
22 4.21 3.41 16.24 15.20
X 4.35 2.80 15.52 14.22

(Chr) chromosome number; (RHMAPPER) maps computed by
us using RHMAPPER for G3 panel data; (CONCORDE) maps
computed using CONCORDE for G3 panel data.
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84 (32.14%) for G3 map of Stanford (Stewart et al.
1997), and 199 of 496 (40.12%) for the integrated map
we produced. The number of contigs that become con-
sistent when one marker is allowed to be misplaced are
318 of 799 (39.80%) for GB4 map of RH Consortium
(Deloukas et al. 1998), 162 of 291 (55.67%) for GB4
map of Whitehead (Hudson et al. 1995), 46 of 84
(54.76%) for G3 map of Stanford (Stewart et al. 1997),
and 309 of 496 (62.30%) for the integrated map we
produced. By each measure, our map is better than the
other three maps. The number of contigs that could be
considered is lower for the integrated map than for the
RH Consortium map because the number of markers
on the integrated map is lower. Furthermore, the num-
ber of consistent contigs is higher, which can be
viewed as evidence that we are not deleting too many
markers and we are deleting markers with problematic
data. However, the contig data and maps produced are
still very inconsistent. Inconsistencies can arise either
because (1) the contig data have many errors, (2) the
mapping procedure is incorrect, or (3) the RH data
have many errors. Evidence that either the contig or
RH data are incorrect, and not the mapping strategy,
comes from looking at the rhvectors of the markers
that are placed consecutively on a contig. We check
whether the contig data are consistent with the RH
data by looking at the OCB distance (rhvector differ-
ences) between rhvectors for the markers consecutively
placed on a contig. Table 4, below, summarizes the
OCB distance observed between markers that were
placed consecutively on a contig. For a RH mapping
strategy to place markers consecutively, the rhvectors
of these markers should be close to each other. There-
fore, no plausible RH mapping strategy should place
markers consecutively if they have more than two or
three differences. We found many cases where two
markers that are consecutive on sequence contigs have
many differences in their rhvectors. Consider, for ex-
ample, markers on GenBank entry AC004231 shown in
Table 5, below. The physical base pair positions on the

sequence suggest that marker 55194 is contained in
marker 77310, which is clearly disputed by the rhvec-
tors for two markers as they differ in 41 positions. For
such extreme discrepancies, the RH mapping strategy
is clearly not the cause of the inconsistency, and there
is some experimental error. We believe, and analysis of
Ben-Dor and Chor (1997) suggests, that smaller dis-
crepancies like those in Table 4, below, are unavoidable
and affect the map computation because of the small
size of RH panels currently in use. We cannot rule out
some other types of errors in conducting the RH ex-
periments or in depositing the data in RHdb, but the
error rates would have to be extremely high to account
for the inconsistencies between rhvectors and contigs.

Consistency with Chromosome 22 Sequence

The completed sequence for chromosome 22 is avail-
able from http://www.sanger.ac.uk/HGP/Chr22/ (Dun-
ham et al. 1999). It consists of 12 contiguous segments
covering 33.4 million bp separated by 11 gaps of
known size. The availability of chromosome 22 se-
quence allows us to consider only the markers that are
placed reliably on a chromosome 22 map and to find
out the percentage of these markers that are in the
same order as the chromosome 22 sequence. Table 3
summarizes the results for the RH Consortium, White-
head, Stanford, and our integrated maps. It is shown
that the integrated map consistently does better than
the RH Consortium and Whitehead maps. In places
where the integrated map does not do as well in per-
cent of markers correct as the Stanford map, we are
considering almost three times as many markers as the
Stanford map. The Généthon map could not be con-
sidered for Table 3 as it does not assign reliability to
placement of markers.

Map Comparison in Terms of LCS

We consider every pair of Généthon, RH Consortium,
Stanford, and our integrated map. Table 6 lists the
number of markers that are common between a pair of

Table 3. Number of Markers that Are in Same Order on the Map as Chromosome 22 Sequence Out
of the Top K% of Markers on the Map

Top K% RH Consortium Integrated Whitehead Stanford

5 14/23 (61) 11/12 (92) 8/10 (80) 4/4 (100)
10 29/46 (63) 19/25 (76) 15/20 (75) 6/8 (75)
15 45/70 (64) 28/38 (74) 20/30 (67) 10/13 (77)
20 57/93 (61) 37/51 (73) 27/40 (68) 12/17 (71)
25 74/117 (63) 47/64 (73) 33/50 (66) 16/22 (73)
50 107/234 (46) 84/129 (65) 60/100 (60) 30/44 (68)
75 145/351 (41) 111/194 (57) 78/150 (52) 49/66 (74)

100 183/469 (39) 151/259 (58) 100/201 (50) 66/89 (74)

The markers are sorted by lod score and the top-most marker has the best lod score. Percentages are given
in parentheses.
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maps and the number of markers in their LCS. A LCS
between a pair of maps gives the largest subset of mark-
ers whose relative order on both maps is the same. As
expected, the number of markers common between
the integrated map and G3/GB4 is more than the num-
ber of markers common between G3 and GB4 maps.
The integrated map looks more consistent with the G3
map than with the GB4 map, when consistency is mea-
sured in terms of the length of the LCS of markers. It is
interesting to note that 82.42% of markers are in LCS
between our integrated map and Généthon’s genetic
map that was not constrained by any initial framework
map as against 95.76% and 90.49% of markers for GB4
and G3 maps, respectively, which used information

from Généthon’s genetic map for constructing their
initial framework map.

DISCUSSION
We presented a method for producing RH maps that
robustly treats the data currently available. Some steps
in the process can be further optimized. In particular,
one would like to have a mechanism in which vectors
with errors can be detected before the TSP is used to
construct a map. This would decrease the number of
markers that are thrown out in step 5 of our algorithm.

We demonstrated with markers from the two larg-
est human RH maps currently available (Stewart et al.
1997; Deloukas et al. 1998) that our map integration
strategy produces maps that are more consistent with
sequence data in GenBank than either map alone. This
validates the hypothesis that integrated maps can add
value over nonintegrated maps. However, our inte-
grated map is still quite inconsistent with sequence
data, and we showed that this is largely due to poor
data quality that cannot be easily overcome by better
mapping algorithms. The inconsistency between
rhvectors and DNA sequence contigs casts doubt on
the hypothesis that adding more markers to current
RH maps can guide future DNA sequencing effectively.

To compute our integrated chromosome maps, we
found it necessary to first recompute maps based on
the previously used markers, so as to take advantage of
some markers that were typed on multiple panels. Re-
computing the initial maps was practical only because
the genomics research community has had the fore-
sight to insist on making sequence, marker, and rhvec-
tor data freely available. The recomputation process
confirmed serious concerns raised by Ben-Dor and
Chor (1997) about how RH mapping is being per-
formed in practice.

Ben-Dor and Chor (1997) presented both theoreti-
cal and practical assessments of RH mapping methods.
On the practical side they tested the usage of TSP to
construct maps. They suggested that computing RH
maps via the reduction to TSP could produce maps of
comparable quality to RHMAPPER. However, they used
smaller data sets than ours, and used only three simple
heuristics for TSP. We pushed their suggestion much
further by using much larger data sets and using the
CONCORDE software package for TSP. The results both
in terms of map quality (Tables 1 and 2), and running
time are striking. CONCORDE consistently produces
maps that have fewer OCB and higher maximum like-
lihood than published maps and maps recomputed
with RHMAPPER. Moreover, CONCORDE could easily
handle all the data for each chromosome, computed all
our single chromosome maps in under 2 weeks, and
was even able to compute a map using all markers
from all chromosomes together in 3 days. In contrast,
RHMAPPER without a precomputed initial framework

Table 5. Data for Markers on Sequence AC004231

Marker
identifier

Radiation
hybrid name bp

Distance

bp OCB

61868 RH55030 124404..124553 — —
72154 RH39412 127258..127493 2854 4
77310 RH13349 149852..150089 22594 42
55194 RH55082 149856..150027 4 41
52532 RH18130 173790..174030 23934 2
19032 RH55096 173894..174232 104 0
64513 RH46938 188674..188820 14780 0
62207 RH28210 211868..212062 23194 0
80183 RH47583 214891..215050 3023 10
21845 RH55137 215148..215274 257 4
12533 RH46475 220582..220701 5434 3

Base pair difference is taken from left end. Distances are
shown with respect to the previous marker.

Table 4. Number of Markers Pairs that Are
Consecutive on a Contig But Have Rhvectors at
OCB Distance

OCB GB4 rhvectors G3 rhvectors

0 595 (15) 0 (0)
1 764 (19) 33 (34)
2 674 (17) 19 (19)
3 567 (14) 27 (28)
4 409 (10) 10 (10)
5 311 (8) 5 (5)
6 209 (5) 1 (1)
7 162 (4) 1 (1)
8 123 (3) 1 (1)
9 74 (2) 0 (0)
10 58 (1) 0 (0)
11 34 (1) 1 (1)
12 28 (1) 0 (0)
13 25 (1) 0 (0)
14 13 (0) 0 (0)
15–24 18 (0) 0 (0)
25–34 4 (0) 0 (0)
35–44 3 (0) 0 (0)
>44 0 (0) 0 (0)

Percentages are in parentheses.
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did not finish the chromosome 1 map within 3 weeks.
Thus, our map construction strategy is the first one
than can be scaled up to handle many more markers
than are currently available without being pinned to a
possibly erroneous framework. We show that RH map-
ping can be done efficiently by taking advantage of the
theoretical work and software package developed for
solving a general combinatorial optimization problem.

On the theoretical side, Ben-Dor and Chor (1997)
raised serious doubts about the ability of the RH ap-
proach to produce good maps with current panel sizes.
We rewrite theorem 3 of Ben-Dor and Chor (1997) as
follows:

Theorem
The success probability s of correctly ordering n uni-
formly distributed markers is bounded by

s #
1

1 + @n2/~2mpql!#
(13)

where m is the number of hybrids, p is the retention
probability, q = 1 1 p, and l is the intensity of the
breakage process.

Using the parameter values of n = 200, m = 83 (for
G3 panel), p = 0.3, l = 10 (Ben-Dor and Chor 1997),
the above inequality shows one has a <1% chance of
finding the correct marker order. The maximum and

minimum number of markers on our framework maps
are 103 for chromosome 4 and 17 for chromosome 21,
respectively. Using the larger m = 93 (GB4 panel) and
103 and 17 markers, the chance of ordering 103 and 17
randomly chosen markers correctly is <3.6% and 58%,
respectively. Although the theorem as stated does not
apply when one selects a subset of markers, which may
be easier to order correctly, it does suggest that sticking
to a rigid framework is unlikely to work well. String-
ham et al. (1999) propose a way of not relying com-
pletely on a fixed framework map but do not produce
a whole genome map based on that method. To avoid
the Ben-Dor and Chor lower bound, one should
choose the framework markers carefully and allow for
the possibility of rearranging or changing the frame-
work markers in light of the other data. Our method is
not pinned to a framework map and allows for the
possibility of framework markers to be rearranged lo-
cally in step 5 followed by possible removal of frame-
work markers during merge in step 6 and step 7.

Moreover, from inequality 13, it follows that panel
sizes must be 2 orders of magnitude larger than cur-
rently used to boost the success probability signifi-
cantly. It is not the case that using too small panel sizes
simply causes local rearrangements that can be ignored
by the commonly used practice of binning nearby
markers. Rather, we find that marker pairs that belong

Table 6. Number of Markers that Are in the Same Order Between a Pair of Maps Out of the Number of Markers that Are
Common Between Them

Chr Gnt vs. Int Gnt vs. GB4 Gnt vs. G3 G3 vs. GB4 Int. vs. GB4 Int vs. G3

1 106/141 121/133 53/61 150/199 1149/2074 338/428
2 65/83 55/58 64/75 98/136 817/1223 287/355
3 90/106 65/66 68/81 96/132 815/1172 324/410
4 43/52 67/68 22/22 74/99 549/877 444/517
5 41/47 34/34 24/26 46/53 733/900 181/220
6 79/98 123/127 29/33 72/89 825/1268 260/295
7 62/78 49/49 53/63 78/102 530/803 236/295
8 32/37 27/27 24/24 56/65 421/734 193/227
9 34/38 24/25 27/28 57/77 444/640 161/210

10 57/65 54/59 33/37 73/96 649/925 219/268
11 49/58 41/41 42/45 79/102 788/1037 275/305
12 51/57 57/60 32/33 49/67 680/1038 213/236
13 26/33 35/35 18/19 33/34 247/436 119/141
14 29/35 30/30 23/23 54/66 463/707 185/211
15 22/31 29/30 16/17 37/53 378/639 108/159
16 34/40 34/35 28/28 32/38 370/519 137/150
17 25/29 26/26 14/14 46/62 487/782 139/153
18 26/28 26/27 16/16 31/43 184/326 109/140
19 19/24 25/25 12/12 25/43 381/591 136/147
20 46/55 44/50 19/20 41/46 378/582 123/133
21 17/22 17/18 11/13 16/20 156/228 99/113
22 9/12 15/17 7/9 16/20 147/251 78/82
23 32/37 42/46 12/16 22/28 383/528 68/112

Total 994/1206 1040/1086 647/715 1281/1670 11974/18280 4432/5307
(82.42%) (95.76%) (90.49%) (76.71%) (65.50%) (83.51%)

(Chr) Chromosome number; (Gnt) Généthon map (Dib et al. 1996); (Int) our integrated map; (GB4) RH Consortium map (Deloukas
et al. 1998); (G3) Stanford map (Stewart et al. 1997).
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close together according to the DNA sequence often
have a very large number of OCB in their rhvectors.
This indicates that either the data quality is poor or the
panel sizes are too small, so that the essential assump-
tion that nearby markers have nearby rhvectors does
not hold with high enough probability. Furthermore,
at present there is no good way to assess the fraction of
markers correctly ordered on a map. This confirms the
theoretical evidence by Ben-Dor and Chor (1997) that
adding more markers without increasing the panel size
is not a fruitful strategy to obtain maps with better
quality.

In sum, there is a map integration and reconstruc-
tion strategy that can produce maps with better qual-
ity. Our software improves current technology for do-
ing the RH mapping in areas of computation time and
algorithms for considering large number of markers for
mapping. The essential impediments to producing
dense high-quality RH maps are data quality and panel
size, not computation.

METHODS
The maps are stored in SQL Server Release 11.0.x of the Sybase
database management software. The functions are imple-
mented using Transact-SQL and C version of Open Client
DB-Library. The algorithm was developed on Unix System V
release 4.0 running under SunOS 5.5.1 using Sun WorkShop
Compiler C 4.2, but it is compatible with other Unix comput-
ers. The mapping software and a copy of this paper are avail-
able via an electronic mail request to richa@helix.nih.gov.
The integrated G3/GB4 marker map is available at http://
www.ncbi.nlm.nih.gov/genome/rhmap. For each chromo-
some, the recomputed integrated map has columns for (1)
marker name, (2) position (cR) on recomputed GB4 map, (3)
odds on recomputed GB4 map, (4) position (cR) on recom-
puted G3 map, and (5) odds on recomputed G3 map. In our
computation, we assigned a unique identifier to each marker.
For each marker its unique identifier and the following infor-
mation, when available, can be obtained by clicking on the
marker name: (1) primer information, (2) aliases for marker
name, (3) mapping information with respect to GeneMap’99,
and (4) e-PCR results on genomic contigs and cDNAs as ap-
propriate. Information on CONCORDE is available at http://
www.caam.rice.edu/keck/concorde.html. Finished sequences
of individual clones produced by the Human Genome Project
have been merged into contiguous sequence segments (con-
tigs) as previously described (Jang et al. 1999). The positions
of markers within these sequences were determined by the
e-PCR program (Schuler 1997), using a word size of six
(W = 6), a variability of up to 10 bases in the PCR product size
(M = 10), and up to 1 mismatching base allowed (N = 1).
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APPENDIX

TSP
If a salesman, starting from his home city, is to visit
exactly once each city on a given list and then return
home, he could select the order in which cities are
visited in such a way that the total distances traveled is
as small as possible. Even when he knows the distance
between every pair of cities, it is not at all clear how the
data should be used to get the tour of minimum dis-
tance efficiently. This is called the TSP.

Mathematically, an instance of TSP is composed of
a number n of cities and an n 2 n distance matrix
D = [dij], where each dij is a non-negative integer and
the question asked by the TSP is, “What is the shortest
tour for the n cities?” It is well known that TSP belongs
to a class of problems called NP-Complete problems
(Garey and Johnson 1979). Loosely speaking, this is a
class of problems for which there is no known polyno-
mial time algorithm, and also for any pair of problems
belonging to this class, one can be reduced to the other
in polynomial time. So, if any problem that belongs to
this class can be solved in polynomial time, all of them
will become solvable in polynomial time. This suggests
that a fast algorithm for the TSP is unlikely to exist.

Work in complexity theory (Karp 1972) indicates
that problems like TSP are probably inherently expo-
nential, that is, the computing time grows exponen-
tially with the number of cities. In view of the compu-
tational difficulties in obtaining optimal tours, a num-
ber of algorithms have been developed that run faster
but do not necessarily produce an optimal tour (Lawler
et al. 1985; Reinelt 1994).

However, even though the TSP is hard in general,
in practice the situation is not hopeless. The software
package CONCORDE (Applegate et al. 1998) provides
two primary tools for solving TSPs. The first is a
chained Lin–Kernighan heuristic (Lin and Kernighan
1973; Martin et al. 1991). Any two cities are connected
by an edge whose cost is the distance between the two
cities. The Lin–Kernighan heuristic is a local improve-
ment heuristic that starts with an initial tour (e.g., a
“nearest-neighbor” tour that at each step goes to the
nearest city not already in the tour) and then repeat-
edly searches for a set of edges in the current tour that
can be exchanged with a set of edges not in the current
tour, shortening the length of the tour. Lin–Kernighan
generalizes the 2-Opt and 3-Opt heuristics, which only
consider exchanges of sets of edges of size 2 and 3,
respectively. Chained Lin–Kernighan uses the Lin–
Kernighan heuristic, but when Lin–Kernighan fails to
find an improving exchange, it repeatedly applies a
random “kick” (a four-edge exchange that is not easily
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made by Lin–Kernighan) to the tour, reruns the Lin–
Kernighan heuristic, and keeps the new tour if the kick
plus Lin–Kernighan resulted in an improvement. Be-
cause the kick is a relatively small disruption to the
tour, the Lin–Kernighan process after a kick is much
faster than the first Lin–Kernighan process from the
initial tour.

The second tool provides a lower bound on all
tours. This lower bound is used to prove that a tour is
optimal or to obtain a quality guarantee for a tour. The
approach CONCORDE uses to establish a lower bound,
introduced by Dantzig et al. (1954), is to consider a
linear relaxation of the TSP. Linear relaxation means
that the problem is reformulated as minimizing a lin-
ear objective function subject to a set of linear in-
equalities. The linear relaxation is different from the
TSP because in TSP some variables must have integer
values, but the linear relaxation drops the constraint
that variables must take on integer values.

The linear relaxation is solved using the simplex
method (Papadimitriou and Steiglitz 1982). To work
back from the solution of the linear relaxation to a
solution for the TSP instance, the solution is refined by
adding “cutting planes,” linear inequalities that are
true for every tour, but violated by the solution of the
current linear relaxation. Because at each step we are
considering a relaxation of the TSP, the solution of the
relaxation provides a lower bound on the solution of
the TSP. If CONCORDE is unable to find any cutting
planes for the current solution or if the lower bound
has ceased improving over a series of cutting planes
CONCORDE resorts to branching. Because for any
nonempty proper subset of the cities a tour must enter
or leave the subset a positive even number of times,
CONCORDE branches by selecting a nonempty proper
subset of the cities, splitting the problem into two sub-
problems, one in which the solution is permitted to
enter or leave the subset only twice and the other in
which the solution is required to enter or leave the
subset at least four times. CONCORDE then recursively
applies the same procedure to each subproblem. Once
branching has begun, the weakest lower bound from
the subproblems provides a lower bound for the TSP.
Of course, if the lower bound in any subproblem ex-
ceeds the length of the best known tour, that subprob-
lem can be pruned. As a result, when solving a TSP, the
chained Lin–Kernighan heuristic is applied to obtain a
very good tour prior to branching, so that subproblems
may be pruned more readily.

These two tools are very effective at handling even
moderately large TSPs. TSPLIB (Reinelt 1991), available
at http://www.iwr.uni-heidelberg.de/iwr/comopt/soft/
TSPLIB95/TSPLIB.html, is a library of TSP and related
variants that provides a benchmark of the state of the
art in solving TSPs. CONCORDE has been used to solve
every TSP problem from TSPLIB with up to 13,509 cit-

ies and has obtained tours provably within 0.11% of
optimal for the five remaining problems (with 14,051–
85,900 cities). On a modern workstation, the chained
Lin–Kernighan heuristic obtains a tour provably with
1.0% of optimal within 1 min for every TSP problem in
TSPLIB.

Equivalence of Likelihood and Transition
Probabilities for Haploid Error-Free Data
For haploid error-free data, equation 1 gives

L~x! = pn1 × qn0 (14)

and equation 2 gives

L~x, y! = @p~1 − ux,yq!#n11 × @pqux,y#
~n01+n10!

× @q~1 − ux,yp!#n00 (15)

We prove equation 10 by the induction on length of
map.

Base Case

(m = 1 ). From equation 1

L~x! = pn1 × qn0 = tx × tx = T~x!

Induction Hypothesis

Suppose the claim holds for all maps of length k < m.

Induction Step

Assume k = m. From equation 6, we want to show that

T~x1, x2, . . . , xm! = L~x1! × L~x2 | x1!
× L~x3 | x2! . . . L~xm | xm−1!

Substituting for T(x1, x2, . . . , xm) from equation 9 and
using induction hypothesis, we get

T~x1, x2, . . . , xm! = tx1
× tx1

,x2
× ? ? ? × txm−1

,xm
× txm

= T~x1, x2, . . . , xm−1! × txm−1
,xm

× txm
/txm−1

= L~x1! × L~x2 | x1!
× L~x3 | x2! . . . L~xm1

| xm−2!

× txm−1
,xm

× txm
/txm−1

Therefore, to prove the claim, it is sufficient to prove
that

~txm−1
,xm

× txm
/txm−1

! = L~xm | xm−1!

= @L~xm−1, xm!L~xm−1!#

Rewriting the above equation and using notation x =
xm-1, y = xm, and nj

i is the number of times i occurs in
rhvector for marker j, it is sufficient to prove that

L~x,y! =
tx,y × ty × L~x!

tx

We first use equation 15 after substituting nx
1 = (n10 +

n11), nx
0 = (n01 + n00), ny

1 = (n01 + n11), and ny
0 = (n10 +

n00).
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L(x, y) = (from equation 15!

@(1 − ux,yp)n00(1 − ux,yq)n11~ux,y=pq!n10+n01#
× ~=pn1

y
=qn0

y! × ~=pn1
x
=qn0

x!

=

@(1 − ux,yp)n00(1 − ux,yq)n11(ux,y=pq!n10+n01#
× ~=pn1

y
=qn0

y! × ~=pn1
x
=qn0

x!
~=pn1

x
=qn0

x!

= (from equation 14)

@(1 − ux,yp)n00(1 − ux,yq)n11~ux,y=pq!n10+n01#
× ~=pn1

y
=qn0

y! × L(x!

~=pn1
x
=qn0

x!

= (from equation 8)

tx,y × ~=pn1
y
=qn0

y! × L(x)

~=pn1
x
=qn0

x!

= (from equation 7)
tx,y × ty × L(x)

tx

REFERENCES
Applegate, D., R. Bixby, V. Chvátal, and W. Cook. 1998. On the
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